پیش‌بینی خشکسالی هیدرولوژیک با استفاده از سری‌های زمانی

Authors

Abstract:

INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a universal definition of drought. The most well-known classification of droughts is based on the nature of the water deficit: (a) the meteorological drought, (b) the hydrological drought, (c) the agricultural drought, (d) the socio-economic drought.Perhaps the most widely used model is the ARIMA model for predicting drought. The two general forms of ARIMA models are non-seasonal ARIMA (p, d, q) and multiplicative seasonal ARIMA(p, d, q)×(P, D, Q) in which p and q are non-seasonal autoregressive and moving average, P and Q are seasonal autoregressive and moving average parameters, respectively. The other two parameters, d and D, are required differencing used to make the series stationary. The differencing operator that is usually used in the case of non-stationary time series. The aim of the study is to predict hydrological drought using time series analysis in the small forest watershed.   MATERIAL AND METHODS Monthly discharge of Nahrkhoran hydrometric station (53˚ 58΄ 02ًE, 36˚ 43΄ 02ًN) during 1980-1981 to 2010-2011 located in Gharasoo watershed, Iran were collected from Company of Water Resources Management of Iran. The present study was carried out using Box and Jenkins (1976) modeling approach. This approach involves the following three steps: Step 1-Model identification In this step, the model that seems to represent the behavior of the series is searched, by the means of autocorrelation function (ACF) and partial autocorrelation function (PACF), for further investigation and parameter estimation. The behavior of ACF and PACF, is to see whether the series is stationary or not, seasonal or non-seasonal. Differencing is done to make non-stationary time series to stationary time series. Step 2-Parameter estimation After identifying models, we need to obtain efficient estimates of the parameters. These parameters should satisfy two conditions namely stationary and invertibility for autoregressive and moving average models, respectively. The parameters should also be tested whether they are statistically significant or not. Associated with parameters value are standard errors of estimate and related t-values. Step 3-Goodness-of-fit test Goodness-of-fit tests verify the validity of the model by some tools. The residuals of the model are usually considered to be time-independent and normally distributed over time. The most common tests applied to test time-independence and normality are the Mann-Kendall of test, the non-parametric Kolmogorov–Smirnov test. Model calibration In order to evaluate the accuracy of the streamflow forecasts obtained by applying the fitted model, Nash-Sutcliff (NS) coefficient of efficiency, root mean square error (RMSE), P-value of Wilcox and determination coefficient (R2) were used. Drought definitions and thresholds A drought is defined as an uninterrupted sequence of streamflow below an arbitrary level. Thus the mean and median value of streamflow time series is selected as the first truncation level. In the present study, as the monthly streamflow time series is applied for drought forecasting, the monthly mean and median values are also applied as the truncation level for each month. The two above truncation levels, we apply two other drought indices called standardized streamflow index (SSFI) and a probabilistic index which is based on hydrologic drought return periods. The SSFI for a given period is defined as the difference of streamflow from mean divided to standard deviation.   RESULTS A multiplicative seasonal autoregressive integrated moving average (SARIMA) model was applied to the monthly streamflow forecasting of the Naharkhoran River. In the first step of model identification, the ACF and PACF of the actual data and nonparametric Mann-Kendall test indicate the need of differencing. The Q–Q plot of the main series does not show normality. Thus, the logarithmic transformation was applied. The transformed Q–Q plot shows that the new series is normal. Based on Autocorrelation (ACF) and Partial Autocorrelation Functions (PACF) and results of Mann-Kendall test, SARIMA(1,1,1)*(0,1,1)12 was selected. For testing the validity of SARIMA(1,1,1)*(0,1,1)12 model for forecasting, the model is used for forecasting 10-, 9-, 5-, 3-, 2- and 1-year monthly streamflow. The present study result demonstrates the performance of time series models for 5-year period forecasting during October 2005 to September 2010. The selected SARIMA model was then used to forecast streamflow from October, 1980 to September, 2011. The forecasted and observed flow rates are compared first with three truncation levels, which are SSFI, time series mean and median. The results showed that when SSFI is as truncation level, the selected model has not the ability to forecast drought. But when  time series mean and median are as truncation level, the ability of the selected model is clear to forecast drought. Hydrologic drought frequency analysis was applied as an alternative truncation level for drought forecasting. Different frequency distributions were fitted to monthly streamflow and the flow rate for hydrologic drought in different 2-, 5-, 10- and 20-year return periods were estimated using maximum likelihood method of quantile estimation. The SARIMA model predict drought and humid periods as well.   CONCLUSIONS Due to the important role of drought forecasting in water resources management, a multiplicative seasonal autoregressive integrated moving average (SARIMA) model was applied to the monthly streamflow forecasting of the Naharkhoran River located in Gharasoo watershed, Iran. After normality examination of streamflow data, nonparametric Mann-Kendall test was used to detect trend analysis of data at confidence level of 95%. Based on ACF and PACF and results of Mann-Kendall test, SARIMA(1,1,1)*(0,1,1)12 was selected. Mean and median streamflow as constant threshold and SSFI and drought frequency analysis in different return periods as variable threshold were used for determining drought periods. The present study result demonstrates the performance of time series models for 5-year period forecasting during October 2005 to September 2010. These models can be applied in water resources management.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی روند خشکسالی هیدرولوژیک با استفاده از تحلیل سری‌های زمانی و شاخص SDI در حوزۀ آبخیز مادیان رود لرستان

وقایع خشکسالی با تأثیر روی منابع آب سطحی و آب زیرزمینی مقدار آب در دسترس بخش‌های مختلف را کاهش می‌دهد. خشکسالی هیدرولوژیک ابتدا با کاهش مقدار بارندگی شروع و به‌طور عادی با کاهش سطح دریاچه‌ها و منابع ذخیره‌ای مرتبط می‌شود. بدین منظور برای اتخاذ تصمیمات مدیریتی مناسب برای جلوگیری از آثار زیان‌بار خشکسالی، باید با ارزیابی و پایش خشکسالی به شناسایی ویژگی‌های این پدیده پرداخت. در این پژوهش برای ارزی...

full text

الگوبندی اقلیم آسایش شهر شهرکرد با استفاده از تحلیل سریهای زمانی

شهرنشینی و توسعه شهرها به همراه افزایش شتابان جمعیت و توسعه‌ فعالیت های صنعتی با مصرف بی رویه سوخت های فسیلی، آلودگی ها را به شدت افزایش داده است که عواقب آن تغییر دوره‌های زمانی مطلوب از نظر اقلیم آسایش است. در واقع با شناخت از وضعیت اقلیمی شهر در ماه‌های مختلف سال و بررسی داده های هواشناسی، ایجاد آسایش اقلیمی امکان پذیر می‌باشد. درتحقیق حاضر از داده‌های ماهانه 4 عامل اقلیمی (میانگین دما، دمای...

full text

تحلیل فراوانی خشکسالی هیدرولوژیک حوضه کرخه با استفاده از تحلیل آماری دو متغیره

In recent years, the joint distribution properties of drought including severity and duration have been widely evaluated using copula. Few studies, however, have worked on drought modeling based on stream flow, especially in semi-arid regions such as the southern regions of Iran. This study followed two purposes. The first purpose was to find the appropriate marginal distribution function for h...

full text

ارزیابی خشکسالی هیدرولوژیک با استفاده از روش حد آستانه ثابت ( مطالعه موردی حوزه سد کرج)

خشکسالی یک یک پدیده خزنده محیطی است. این پدیده موجب کمبود آب برای برخی فعالیت ها، گروه ها و محیط زیست می شود. خشکسالی بایستی در مقایسه با شرایط اقلیمی و هیدرولوژیکی متوسط در دراز مدت مورد ارزیابی قرار گیرد. خشکسالی هیدرولوژیک از طریق کاهش میزان ذخیره آب دریاچه ها ، پایین رفتن سطوح آب های زیرزمینی و کاهش دبی جریان رودخانه ای تشخیص داده می شود  و معمولا" بر منطقه وسیعی تاثیر می گذارد متداولترین ت...

full text

بررسی خشکسالی هیدرولوژیک رودخانه ی ارمند با استفاده از تجزیه و تحلیل جریان های کم آبی

سابقه و هدف: پایش و ارزیابی خشکسالی هیدرولوژیک به دلیل وقوع مکرر آن در حوزه‌های مختلف آبریز در ایران و به منظور پیشگیری و مدیریت بحران ناشی از آن به یک ضرورت بدل شده است. در اغلب مطالعات انجام گرفته از شاخص‌های خشکسالی به منظور بررسی آن استفاده شده است. شاخص‌های خشکسالی مانند شاخص خشکسالی رودخانه‌ای (SDI)، با استفاده از محاسبات آماری بر داده‌های جریان رودخانه در نهایت منجر به یک عدد می‌گردد که ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 20

pages  45- 56

publication date 2018-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023